Keywords: Automated Feature Construction, Automated Machine Learning, Genetic Programming, Evolutionary Algorithm
Abstract: In recent years, deep learning has achieved impressive performance in the computer vision and natural language processing domains. In the tabular data classification scenario, with the emergence of the transformer architecture, a number of algorithms have been reported to yield better results than conventional tree-based models. Most of these methods attribute the success of deep learning methods to the expressive feature construction capability of neural networks. Nonetheless, in real practice, manually designed high-order features with traditional machine learning methods are still widely used because neural-network-based features can be easy to over-fitting. In this paper, we propose an evolution-based feature engineering algorithm to imitate the manual feature construction process through trial and improvement. Importantly, the evolutionary method provides an opportunity to optimize cross-validation loss, where gradient methods fail to do so. On a large-scale classification benchmark of 119 datasets, the experimental results demonstrate that the proposed method outperforms existing fine-tuned state-of-the-art tree-based and deep-learning-based classification algorithms.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
14 Replies
Loading