HiViT: A Simpler and More Efficient Design of Hierarchical Vision TransformerDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: Hierarchical vision transformers, self-supervised learning, masked image modeling
TL;DR: A novel hierarchical vision transformer that is stronger and faster when applied to masked image modeling
Abstract: There has been a debate on the choice of plain vs. hierarchical vision transformers, where researchers often believe that the former (e.g., ViT) has a simpler design but the latter (e.g., Swin) enjoys higher recognition accuracy. Recently, the emerge of masked image modeling (MIM), a self-supervised visual pre-training method, raised a new challenge to vision transformers in terms of flexibility, i.e., part of image patches or tokens are to be discarded, which seems to claim the advantages of plain vision transformers. In this paper, we delve deep into the comparison between ViT and Swin, revealing that (i) the performance gain of Swin is mainly brought by a deepened backbone and relative positional encoding, (ii) the hierarchical design of Swin can be simplified into hierarchical patch embedding (proposed in this work), and (iii) other designs such as shifted-window attentions can be removed. By removing the unnecessary operations, we come up with a new architecture named HiViT (short for hierarchical ViT), which is simpler and more efficient than Swin yet further improves its performance on fully-supervised and self-supervised visual representation learning. In particular, after pre-trained using masked autoencoder (MAE) on ImageNet-1K, HiViT-B reports a 84.6% accuracy on ImageNet-1K classification, a 53.3% box AP on COCO detection, and a 52.8% mIoU on ADE20K segmentation, significantly surpassing the baseline. Code is available at https://github.com/zhangxiaosong18/hivit.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
Supplementary Material: zip
12 Replies

Loading