Self-supervised Denoising and Bulk Motion Artifact Removal of 3D Optical Coherence Tomography Angiography of Awake Brain

Published: 01 Jan 2024, Last Modified: 16 Sept 2025MICCAI (11) 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Denoising of 3D Optical Coherence Tomography Angiography (OCTA) for awake brain microvasculature is challenging. An OCTA volume is scanned slice by slice, with each slice (named B-scan) derived from dynamic changes in successively acquired OCT images. A B-scan of an awake brain often suffers from complex noise and Bulk Motion Artifacts (BMA), severely degrading image quality. Also, acquiring clean B-scans for training is difficult. Fortunately, we observe that, the slice-wise imaging procedure makes the noises mostly independent across B-scans, while preserving the continuity of vessel (including capillaries) signals across B-scans. Thus inspired, we propose a novel blind-slice self-supervised learning method to denoise 3D brain OCTA volumes slice by slice. For each B-scan slice, named center B-scan, we mask it entirely black and train the network to recover the original center B-scan using its neighboring B-scans. To enhance the BMA removal performance, we adaptively select only BMA-free center B-scans for model training. We further propose two novel refinement methods: (1) a non-local block to enhance vessel continuity and (2) a weighted loss to improve vascular contrast. To the best of our knowledge, this is the first self-supervised 3D OCTA denoising method that effectively reduces both complex noise and BMA while preserving capillary signals in brain OCTA volumes. Code is available at https://github.com/ZhenghLi/SOAD.
Loading