On Representation Complexity of Model-based and Model-free Reinforcement Learning

Published: 16 Jan 2024, Last Modified: 11 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: model-based and model-free RL, representation complexity, circuit complexity, approximation error
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We study representation complexity of model-based and model-free RL through circuit complexity to provide unique insights into sample efficiency of model-based RL.
Abstract: We study the representation complexity of model-based and model-free reinforcement learning (RL) in the context of circuit complexity. We prove theoretically that there exists a broad class of MDPs such that their underlying transition and reward functions can be represented by constant depth circuits with polynomial size, while the optimal $Q$-function suffers an exponential circuit complexity in constant-depth circuits. By drawing attention to the approximation errors and building connections to complexity theory, our theory provides unique insights into why model-based algorithms usually enjoy better sample complexity than model-free algorithms from a novel representation complexity perspective: in some cases, the ground-truth rule (model) of the environment is simple to represent, while other quantities, such as $Q$-function, appear complex. We empirically corroborate our theory by comparing the approximation error of the transition kernel, reward function, and optimal $Q$-function in various Mujoco environments, which demonstrates that the approximation errors of the transition kernel and reward function are consistently lower than those of the optimal $Q$-function. To the best of our knowledge, this work is the first to study the circuit complexity of RL, which also provides a rigorous framework for future research.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning theory
Submission Number: 8968
Loading