Object-less Vision-language Model on Visual Question Classification for Blind People

Published: 01 Jan 2022, Last Modified: 20 May 2025ICAART (3) 2022EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Despite the long-standing appearance of question types in the Visual Question Answering dataset, Visual Question Classification does not received enough public interest in research. Different from general text classification, a visual question requires an understanding of visual and textual features simultaneously. Together with the enthusiasm and novelty of Visual Question Classification, the most important and practical goal we concentrate on is to deal with the weakness of Object Detection on object-less images. We thus propose an Object-less Visual Question Classification model, OL–LXMERT, to generate virtual objects replacing the dependence of Object Detection in previous Vision-Language systems. Our architecture is effective and powerful enough to digest local and global features of images in understanding the relationship between multiple modalities. Through our experiments in our modified VizWiz-VQC 2020 dataset of blind people, our Object-less LXMERT achieves promising resul
Loading