A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view StereoDownload PDFOpen Website

2021 (modified: 28 Oct 2022)ICCV 2021Readers: Everyone
Abstract: In this paper, we introduce a deep multi-view stereo (MVS) system that jointly predicts depths, surface normals and per-view confidence maps. The key to our approach is a novel solver that iteratively solves for per-view depth map and normal map by optimizing an energy potential based on the locally planar assumption. Specifically, the algorithm updates depth map by propagating from neigh-boring pixels with slanted planes, and updates normal map with local probabilistic plane fitting. Both two steps are monitored by a customized confidence map. This solver is not only effective as a post-processing tool for plane-based depth refinement and completion, but also differentiable such that it can be efficiently integrated into deep learning pipelines. Our multi-view stereo system employs multiple optimization steps of the solver over the initial prediction of depths and surface normals. The whole system can be trained end-to-end, decoupling the challenging problem of matching pixels within poorly textured regions from the cost-volume based neural network. Experimental results on ScanNet and RGB-D Scenes V2 demonstrate state-of-the-art performance of the proposed deep MVS system on multi-view depth estimation, with our proposed solver consistently improving the depth quality over both conventional and deep learning based MVS pipelines. Code is available at https://github.com/thuzhaowang/idn-solver.
0 Replies

Loading