Multi-Modal and Multi-Attribute Generation of Single Cells with CFGen

Published: 22 Jan 2025, Last Modified: 03 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: scRNA-seq, Flow Matching, Generative modeling, Multiomics
TL;DR: We devise a new method to generate discrete multi-attribute and multi-modal single-cell data using Flow matching.
Abstract: Generative modeling of single-cell RNA-seq data is crucial for tasks like trajectory inference, batch effect removal, and simulation of realistic cellular data. However, recent deep generative models simulating synthetic single cells from noise operate on pre-processed continuous gene expression approximations, overlooking the discrete nature of single-cell data, which limits their effectiveness and hinders the incorporation of robust noise models. Additionally, aspects like controllable multi-modal and multi-label generation of cellular data remain underexplored. This work introduces CellFlow for Generation (CFGen), a flow-based conditional generative model that preserves the inherent discreteness of single-cell data. CFGen generates whole-genome multi-modal single-cell data reliably, improving the recovery of crucial biological data characteristics while tackling relevant generative tasks such as rare cell type augmentation and batch correction. We also introduce a novel framework for compositional data generation using Flow Matching. By showcasing CFGen on a diverse set of biological datasets and settings, we provide evidence of its value to the fields of computational biology and deep generative models.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7686
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview