Multi-Task Learning of Query Generation and Classification for Generative Conversational Question RewritingDownload PDF

25 Jan 2024OpenReview Archive Direct UploadReaders: Everyone
Abstract: In conversational search settings, users ask questions and receive answers as part of a conversation. The ambiguity in the questions is a common challenge, which can be effectively addressed by leveraging contextual information from the conversation history. In this context, determining topic continuity and reformulating questions into well-defined queries are crucial tasks. Previous approaches have typically addressed these tasks either as a classification task in the case of topic continuity or as a text generation task for question reformulation. However, no prior work has combined both tasks to effectively identify ambiguous questions as part of a conversation. In this paper, we propose a MultiTask Learning (MTL) approach that uses a text generation model for both question rewriting and classification. Our models, based on BART and T5, are trained to rewrite conversational questions and identify follow-up questions simultaneously. We evaluate our approach on multiple test sets and demonstrate that it outperforms single-task learning baselines on the three LIF test sets, with statistically significant improvements ranging from +3.5% to +10.5% in terms of F1 and Micro-F1 scores. We also show that our approach outperforms single-task question rewriting models in passage retrieval on a large OR-QuAC test set.
0 Replies

Loading