Multi-view adversarially learned inference for cross-domain joint distribution matchingDownload PDF

02 Nov 2022OpenReview Archive Direct UploadReaders: Everyone
Abstract: Many important data mining problems can be modeled as learning a (bidirectional) multidimensional mapping between two data domains. Based on the generative adversarial networks (GANs), particularly conditional ones, cross-domain joint distribution matching is an increasingly popular kind of methods addressing such problems. Though significant advances have been achieved, there are still two main disadvantages of existing models, ie, the requirement of large amount of paired training samples and the notorious instability of training. In this paper, we propose a multi-view adversarially learned inference (ALI) model, termed as MALI, to address these issues. Unlike the common practice of learning direct domain mappings, our model relies on shared latent representations of both domains and can generate arbitrary number of paired faking samples, benefiting from which usually very few paired samples …
0 Replies

Loading