Abstract: This work presents DANCE, a differentiable approach towards the co-exploration of hardware accelerator and network architecture design. At the heart of DANCE is a differentiable evaluator network. By modeling the hardware evaluation software with a neural network, the relation between the accelerator design and the hardware metrics becomes differentiable, allowing the search to be performed with backpropagation. Compared to the naive existing approaches, our method performs co-exploration in a significantly shorter time, while achieving superior accuracy and hardware cost metrics.
0 Replies
Loading