Abstract: Large Language Model (LLM) agents excel at multi-step, tool-augmented tasks. However, smart homes introduce distinct challenges, requiring agents to handle latent user intents, temporal dependencies, device constraints, scheduling, and more. The main bottlenecks for developing smart home agents with such capabilities include the lack of a realistic simulation environment where agents can interact with devices and observe the results, as well as a challenging benchmark to evaluate them. To address this, we introduce $\textbf{SimuHome}$, a time-accelerated home environment that simulates smart devices, supports API calls, and reflects changes in environmental variables. By building the simulator on the Matter protocol, the global industry standard for smart home communication, SimuHome provides a high-fidelity environment, and agents validated in SimuHome can be deployed on real Matter-compliant devices with minimal adaptation. We provide a challenging benchmark of 600 episodes across twelve user query types that require the aforementioned capabilities. Our evaluation of 16 agents under a unified ReAct framework reveals distinct capabilities and limitations across models. Models under 7B parameters exhibited negligible performance across all query types. Even GPT-4.1, the best-performing standard model, struggled with implicit intent inference, state verification, and particularly temporal scheduling. While reasoning models such as GPT-5.1 consistently outperformed standard models on every query type, they required over three times the average inference time, which can be prohibitive for real-time smart home applications. This highlights a critical trade-off between task performance and real-world practicality.
External IDs:dblp:journals/corr/abs-2509-24282
Loading