Seeing Differently, Acting Similarly: Heterogeneously Observable Imitation LearningDownload PDF

Published: 01 Feb 2023, 19:23, Last Modified: 01 Mar 2023, 13:46ICLR 2023 notable top 25%Readers: Everyone
Keywords: Imitation Learning, Heterogeneous Observation, Importance Weighting, Learning with Rejection
Abstract: In many real-world imitation learning tasks, the demonstrator and the learner have to act under different observation spaces. This situation brings significant obstacles to existing imitation learning approaches, since most of them learn policies under homogeneous observation spaces. On the other hand, previous studies under different observation spaces have strong assumptions that these two observation spaces coexist during the entire learning process. However, in reality, the observation coexistence will be limited due to the high cost of acquiring expert observations. In this work, we study this challenging problem with limited observation coexistence under heterogeneous observations: Heterogeneously Observable Imitation Learning (HOIL). We identify two underlying issues in HOIL: the dynamics mismatch and the support mismatch, and further propose the Importance Weighting with REjection (IWRE) algorithm based on importance weighting and learning with rejection to solve HOIL problems. Experimental results show that IWRE can solve various HOIL tasks, including the challenging tasks of transforming the vision-based demonstrations to random access memory (RAM)-based policies in the Atari domain, even with limited visual observations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
20 Replies