Continual Learning in the Presence of Spurious Correlations: Analyses and a Simple Baseline

Published: 16 Jan 2024, Last Modified: 15 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: continual learning, bias, spurious correlation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We first consider continual learning problem in the presence of spurious correlations.
Abstract: Most continual learning (CL) algorithms have focused on tackling the stability-plasticity dilemma, that is, the challenge of preventing the forgetting of past tasks while learning new ones. However, we argue that they have overlooked the impact of knowledge transfer when the training dataset of a certain task is biased — namely, when the dataset contains some spurious correlations that can overly influence the prediction rule of a model. In that case, how would the dataset bias of a certain task affect the prediction rules of a CL model for future or past tasks? In this work, we carefully design systematic experiments using three benchmark datasets to answer the question from our empirical findings. Specifically, we first show through two-task CL experiments that standard CL methods, which are oblivious of the dataset bias, can transfer bias from one task to another, both forward and backward. Moreover, we find out this transfer is exacerbated depending on whether the CL methods focus on stability or plasticity. We then present that the bias is also transferred and even accumulates in longer task sequences. Finally, we offer a standardized experimental setup and a simple, yet strong plug-in baseline method, dubbed as group-class Balanced Greedy Sampling (BGS), which are utilized for the development of more advanced bias-aware CL methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: transfer learning, meta learning, and lifelong learning
Submission Number: 5145
Loading