Abstract: Predicting air pollution concentration is crucial and beneficial for public health. This study proposes a domain-specific Bayesian deep-learning model for long-term air pollution forecast in China and the United Kingdom. Our proposed model carries three novelties: First, a domain-specific knowledge is integrated to take into account the strong statistical relationship between PM$_{2.5}$ and PM$_{10}$ as a regularization term; Second, an attention layer is included to capture the influential historical feature and the recursive temporal correlation of air quality data; Third, results generated from different multi-step forecast strategies are combined based on corresponding uncertainty measures to improve our model’s performance. Our model outperforms other baseline models. Results show that incorporating Bayesian and domain-specific knowledge into the deep learning model can reduce the prediction errors by a maximum of 3.7% and 12.4%, for Beijing and London, respectively. Specifically, incorporating domain-specific knowledge into the Bayesian deep-learning model reduces prediction errors whilst the integration of Bayesian techniques allows the fusion of different forecast strategies to improve prediction accuracy. In future, additional influential domain-specific features can be added to further improve our deep-learning model’s prediction accuracy and interpretability.
Loading