ARC-Encoder: learning compressed text representations for large language models

16 Sept 2025 (modified: 11 Feb 2026)Submitted to ICLR 2026EveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM, Context compression, auto-encoder, NLP
Abstract: Recent techniques such as retrieval-augmented generation or chain-of-thought reasoning have led to longer contexts and increased inference costs. Context compression techniques can reduce these costs, but the most effective approaches require fine-tuning the target model or even modifying its architecture. This can degrade its general abilities when not used for this specific purpose. Here we explore an alternative approach: an encoder that compresses the context into continuous representations which replace token embeddings in decoder LLMs. First, we perform a systematic study of training strategies and architecture choices for the encoder. Our findings led to the design of an Adaptable text Representations Compressor, named ARC-Encoder, which outputs $x$-times fewer continuous representations (typically $x \in $ {4,8}) than text tokens. We evaluate ARC-Encoder across a variety of LLM usage scenarios, ranging from in-context learning to context window extension, on both instruct and base decoders. Results show that ARC-Encoder achieves state-of-the-art performance on several benchmarks while improving computational efficiency at inference. Finally, we demonstrate that our models can be adapted to multiple decoders simultaneously, allowing a single encoder to generalize across different decoder LLMs. This makes ARC-Encoder a flexible and efficient solution for portable encoders that can support multiple LLMs, requiring only small model-specific projectors for adaptation.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Submission Number: 7699
Loading