CLIP-It! Language-Guided Video SummarizationDownload PDF

21 May 2021, 20:42 (edited 13 Jan 2022)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: video summarization, language-guided video summarization, query-focused video summarization, multimodal video summarization
  • TL;DR: We introduce CLIP-It, a multimodal transformer for language-guided video summarization which works on both generic and query-focused video summarization tasks.
  • Abstract: A generic video summary is an abridged version of a video that conveys the whole story and features the most important scenes. Yet the importance of scenes in a video is often subjective, and users should have the option of customizing the summary by using natural language to specify what is important to them. Further, existing models for fully automatic generic summarization have not exploited available language models, which can serve as an effective prior for saliency. This work introduces CLIP-It, a single framework for addressing both generic and query-focused video summarization, typically approached separately in the literature. We propose a language-guided multimodal transformer that learns to score frames in a video based on their importance relative to one another and their correlation with a user-defined query (for query-focused summarization) or an automatically generated dense video caption (for generic video summarization). Our model can be extended to the unsupervised setting by training without ground-truth supervision. We outperform baselines and prior work by a significant margin on both standard video summarization datasets (TVSum and SumMe) and a query-focused video summarization dataset (QFVS). Particularly, we achieve large improvements in the transfer setting, attesting to our method's strong generalization capabilities.
  • Supplementary Material: zip
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
  • Code: https://github.com/medhini/clip_it
14 Replies

Loading