Abstract: Data poisoning and backdoor attacks manipulate training data to induce security breaches in a victim model. These attacks can be provably deflected using differentially private (DP) training methods, although this comes with a sharp decrease in model performance. The InstaHide method has recently been proposed as an alternative to DP training that leverages supposed privacy properties of the mixup augmentation, although without rigorous guarantees. In this paper, we rigorously show that $k$-way mixup provably yields at least $k$ times stronger DP guarantees than a naive DP mechanism, and we observe that this enhanced privacy guarantee is a strong foundation for building defenses against poisoning.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
5 Replies
Loading