How Many Perturbations Break This Model? Evaluating Robustness Beyond Adversarial Accuracy

Published: 24 Apr 2023, Last Modified: 15 Jun 2023ICML 2023 PosterEveryoneRevisions
Abstract: Robustness to adversarial attacks is typically evaluated with adversarial accuracy. While essential, this metric does not capture all aspects of robustness and in particular leaves out the question of how many perturbations can be found for each point. In this work, we introduce an alternative approach, adversarial sparsity, which quantifies how difficult it is to find a successful perturbation given both an input point and a constraint on the direction of the perturbation. We show that sparsity provides valuable insight into neural networks in multiple ways: for instance, it illustrates important differences between current state-of-the-art robust models them that accuracy analysis does not, and suggests approaches for improving their robustness. When applying broken defenses effective against weak attacks but not strong ones, sparsity can discriminate between the totally ineffective and the partially effective defenses. Finally, with sparsity we can measure increases in robustness that do not affect accuracy: we show for example that data augmentation can by itself increase adversarial robustness, without using adversarial training.
Submission Number: 3090