AS-MAC: An Adaptive Scheduling MAC Protocol for Reducing the End-to-End Delay in AUV-Assisted Underwater Acoustic Networks
Abstract: Autonomous Underwater Vehicle (AUV)-assisted Underwater Acoustic Networks (UANs) are promising for complex ocean applications. In essence, an AUV-assisted UAN is still dominated by fixed nodes, and Time Division Multiple Access (TDMA)-based Medium Access Control (MAC) protocols have undisputed practicability in such fixed nodes-dominated UANs since they are simple and easy to deploy. However, AUV-assisted UANs may exist dynamic bidirectional data streams, while most existing protocols assume UANs have a unidirectional data stream, and their fixed scheduling sequence results in the long end-to-end delay in AUV-assisted UANs. In this paper, we first reveal a phenomenon between the data stream and the scheduling sequence, derived from real-world experiments: their consistent direction decreases the packet waiting delay but increases the slot length, and vice versa. To optimize the end-to-end delay, UANs with dynamic bidirectional data streams expect the MAC protocol to provide a flexible scheduling sequence. To this end, we propose a low-delay Adaptive Scheduling MAC protocol (AS-MAC) based on TDMA for AUV-assisted UANs. In AS-MAC, we analyze the relationship between scheduling sequence and data stream, extracting two significant factors: slot length and packet delay. Afterwards, we design Slot Length Model (SLM) and Packet Delay Model (PDM) to analyze the end-to-end delay of different data streams. Based on these two models, we present a Scheduling Sequence and Slot Length allocation Algorithm (SSSLA) to adaptively provide the minimum end-to-end delay for current bidirectional data streams. Extensive simulation results show that AS-MAC efficiently addresses severe queue congestion of the state-of-the-art protocols and reduces the end-to-end delay of different dynamic streams in various scenarios.
Loading