Pruning Adatperfusion with Lottery Ticket HypothesisDownload PDF

Anonymous

16 Jan 2022 (modified: 05 May 2023)ACL ARR 2022 January Blind SubmissionReaders: Everyone
Abstract: Pre-trained language models have shown great success in multiple downstream tasks. However, they are computationally expensive to fine-tune. Thus, transfer learning with adapter modules has been introduced to alleviate this problem, helping to extract knowledge of the downstream tasks. And the latest Adapterfusion model can further merge multiple adapters to incorporate knowledge from different tasks. However, merging multiple adapters will inevitably cause redundancies, increasing the training and inference time massively. Therefore, in this paper, we propose an approach to identify the influence of each adapter module and a novel way to prune adapters based on the prestigious Lottery Ticket Hypothesis. Experiments on GLUE datasets show that the pruned Adapterfusion model with our scheme can achieve state-of-the-art results, reducing sizes significantly while keeping performance intact.
Paper Type: long
0 Replies

Loading