Generative Learning for Solving Non-Convex Problem with Multi-Valued Input-Solution Mapping

Published: 16 Jan 2024, Last Modified: 16 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Non-convex optimization, Multi-valued solution mapping, Generative model, Ordinary differential equation, Supervised learning
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a generative learning framework to learn the multi-valued input-solution mapping for non-convex optimization problems.
Abstract: By employing neural networks (NN) to learn input-solution mappings and passing a new input through the learned mapping to obtain a solution instantly, recent studies have shown remarkable speed improvements over iterative algorithms for solving optimization problems. Meanwhile, they also highlight methodological challenges to be addressed. In particular, general non-convex problems often present multiple optimal solutions for identical inputs, signifying a complex, multi-valued input-solution mapping. Conventional learning techniques, primarily tailored to learn single-valued mappings, struggle to train NNs to accurately decipher multi-valued ones, leading to inferior solutions. We address this fundamental issue by developing a generative learning approach using a rectified flow (RectFlow) model built upon ordinary differential equations. In contrast to learning input-solution mapping, we learn the mapping from input to solution distribution, exploiting the universal approximation capability of the RectFlow model. Upon receiving a new input, we employ the trained RectFlow model to sample high-quality solutions from the input-dependent distribution it has learned. Our approach outperforms conceivable GAN and Diffusion models in terms of training stability and run-time complexity. We provide a detailed characterization of the optimality loss and runtime complexity associated with our generative approach. Simulation results for solving non-convex problems show that our method achieves significantly better solution optimality than recent NN schemes, with comparable feasibility and speedup performance.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: general machine learning (i.e., none of the above)
Submission Number: 5032
Loading