Keywords: edge computing systems, neuro-inspired computing, hardware implementation, synaptic device, hardware-oriented neural network
Abstract: Hardware neuromorphic chips that mimic the biological nervous systems have recently attracted significant attention due to their ultra-low power and parallel computation. However, the inherent variability of nano-scale synaptic devices causes a weight perturbation and performance drop of neural networks. This paper proposes a training method to find weight with robustness to intrinsic device variability. A stochastic weight characteristic incurred by device inherent variability is considered during training. We investigate the impact of weight variation on both Spiking Neural Network (SNN) and standard Artificial Neural Network (ANN) with different architectures including fully connected, convolutional neural network (CNN), VGG, and ResNet on MNIST, CIFAR-10, and CIFAR-100. Experimental results show that a weight variation-aware training method (WVAT) can dramatically minimize the performance drop on weight variability by exploring a flat loss landscape. When there are weight perturbations, WVAT yields 85.21% accuracy of VGG-5 on CIFAR-10, reducing accuracy degradation by more than 1/10 compared with SGD. Finally, WVAT is easy to implement on various architectures with little computational overhead.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
11 Replies
Loading