Avoiding Shortcuts in Unpaired Image-to-Image Translation

Published: 14 May 2022, Last Modified: 04 Mar 2025International Conference on Image Analysis and Processing (ICIAP) 2022EveryoneCC BY 4.0
Abstract: Image-to-image translation is a very popular task in deep learning. In particular, one of the most effective and popular approach to solve it, when a paired dataset of examples is not available, is to use a cycle consistency loss. This means forcing an inverse mapping in order to reverse the output of the network back to the source domain and reduce the space of all the possible mappings. Nevertheless, the network could learn to take shortcuts and softly apply the target domain in order to make the reverse translation easier therefore producing unsatisfactory results. For this reason, in this paper an additional constraint is introduced during the training phase of an unpaired image-to-image translation network; this forces the model to have the same attention both when applying the target domains and when reversing the translation. This approach has been tested on different datasets showing a consistent improvement over the generated results.
Loading