Abstract: Indirect Time-of-Flight (ToF) imaging is widely applied in practice for its superiorities on cost and spatial resolution. However, lower signal-to-noise ratio (SNR) of measurement leads to larger error in ToF imaging, especially for imaging scenes with strong ambient light or long distance. In this paper, we propose a Fisher-information guided framework to jointly optimize the coding functions (light modulation and sensor demodulation functions) and the reconstruction network of iToF imaging, with the super-vision of the proposed discriminative fisher loss. By introducing the differentiable modeling of physical imaging process considering various real factors and constraints, e.g., light-falloff with distance, physical implementability of coding functions, etc., followed by a dual-branch depth reconstruction neural network, the proposed method could learn the optimal iToF imaging system in an end-to-end manner. The effectiveness of the proposed method is extensively verified with both simulations and prototype experiments.
0 Replies
Loading