Beyond Aesthetics: Cultural Competence in Text-to-Image Models

Published: 26 Sept 2024, Last Modified: 13 Nov 2024NeurIPS 2024 Track Datasets and Benchmarks PosterEveryoneRevisionsBibTeXCC BY-NC-SA 4.0
Keywords: cultural diversity, text-to-image models, vendi score, cultural knowledge, knowledge base, self-refinement, inclusive AI
TL;DR: A new cultural competence benchmark for T2I with cultural diversity as a novel metric for T2I evaluation.
Abstract: Text-to-Image (T2I) models are being increasingly adopted in diverse global communities where they create visual representations of their unique cultures. Current T2I benchmarks primarily focus on faithfulness, aesthetics, and realism of generated images, overlooking the critical dimension of *cultural competence*. In this work, we introduce a framework to evaluate cultural competence of T2I models along two crucial dimensions: cultural awareness and cultural diversity, and present a scalable approach using a combination of structured knowledge bases and large language models to build a large dataset of cultural artifacts to enable this evaluation. In particular, we apply this approach to build CUBE (CUltural BEnchmark for Text-to-Image models), a first-of-its-kind benchmark to evaluate cultural competence of T2I models. CUBE covers cultural artifacts associated with 8 countries across different geo-cultural regions and along 3 concepts: cuisine, landmarks, and art. CUBE consists of 1) CUBE-1K, a set of high-quality prompts that enable the evaluation of cultural awareness, and 2) CUBE-CSpace, a larger dataset of cultural artifacts that serves as grounding to evaluate cultural diversity. We also introduce cultural diversity as a novel T2I evaluation component, leveraging quality-weighted Vendi score. Our evaluations reveal significant gaps in the cultural awareness of existing models across countries and provide valuable insights into the cultural diversity of T2I outputs for underspecified prompts. Our methodology is extendable to other cultural regions and concepts and can facilitate the development of T2I models that better cater to the global population.
Supplementary Material: zip
Submission Number: 2345
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview