How to Train Your MAML to Excel in Few-Shot ClassificationDownload PDF

Published: 28 Jan 2022, Last Modified: 22 Oct 2023ICLR 2022 PosterReaders: Everyone
Keywords: meta-learning, few-shot learning, classification, MAML
Abstract: Model-agnostic meta-learning (MAML) is arguably one of the most popular meta-learning algorithms nowadays. Nevertheless, its performance on few-shot classification is far behind many recent algorithms dedicated to the problem. In this paper, we point out several key facets of how to train MAML to excel in few-shot classification. First, we find that MAML needs a large number of gradient steps in its inner loop update, which contradicts its common usage in few-shot classification. Second, we find that MAML is sensitive to the class label assignments during meta-testing. Concretely, MAML meta-trains the initialization of an $N$-way classifier. These $N$ ways, during meta-testing, then have "$N!$" different permutations to be paired with a few-shot task of $N$ novel classes. We find that these permutations lead to a huge variance of accuracy, making MAML unstable in few-shot classification. Third, we investigate several approaches to make MAML permutation-invariant, among which meta-training a single vector to initialize all the $N$ weight vectors in the classification head performs the best. On benchmark datasets like MiniImageNet and TieredImageNet, our approach, which we name UNICORN-MAML, performs on a par with or even outperforms many recent few-shot classification algorithms, without sacrificing MAML's simplicity.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
15 Replies