Adaptive Context Length Optimization with Low-Frequency Truncation for Multi-Agent Reinforcement Learning

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: multi-agent reinforcement learning, adaptive context length, low-frequency truncation, long-term dependencies
TL;DR: Large fixed context length limits exploration and introduces redundancy in MARL. We propose an adaptive context length optimization method with Fourier-based low-frequency truncation to improve long-term decision-making.
Abstract: Recently, deep multi-agent reinforcement learning (MARL) has demonstrated promising performance for solving challenging tasks, such as long-term dependencies and non-Markovian environments. Its success is partly attributed to conditioning policies on large fixed context length. However, such large fixed context lengths may lead to limited exploration efficiency and redundant information. In this paper, we propose a novel MARL framework to obtain adaptive and effective contextual information. Specifically, we design a central agent that dynamically optimizes context length via temporal gradient analysis, enhancing exploration to facilitate convergence to global optima in MARL. Furthermore, to enhance the adaptive optimization capability of the context length, we present an efficient input representation for the central agent, which effectively filters redundant information. By leveraging a Fourier-based low-frequency truncation method, we extract global temporal trends across decentralized agents, providing an effective and efficient representation of the MARL environment. Extensive experiments demonstrate that the proposed method achieves state-of-the-art (SOTA) performance on long-term dependency tasks, including PettingZoo, MiniGrid, Google Research Football (GRF), and StarCraft Multi-Agent Challenge v2 (SMACv2).
Supplementary Material: zip
Primary Area: Reinforcement learning (e.g., decision and control, planning, hierarchical RL, robotics)
Submission Number: 14941
Loading