A Cascaded Deep Learning Framework for Detecting Aortic Dissection Using Non-contrast Enhanced Computed TomographyDownload PDFOpen Website

Published: 01 Jan 2021, Last Modified: 12 May 2023EMBC 2021Readers: Everyone
Abstract: Aortic dissection (AD) is a rare but potentially fatal disease with high mortality. The aim of this study is to synthesize contrast enhanced computed tomography (CE-CT) images from non-contrast CT (NCE-CT) images for detecting aortic dissection. In this paper, a cascaded deep learning framework containing a 3D segmentation network and a synthetic network was proposed and evaluated. A 3D segmentation network was firstly used to segment aorta from NCE-CT images and CE-CT images. A conditional generative adversarial network (CGAN) was subsequently employed to map the NCE-CT images to the CE-CT images non-linearly for the region of aorta. The results of the experiment suggest that the cascaded deep learning framework can be used for detecting the AD and outperforms CGAN alone.
0 Replies

Loading