Generating Training Data with Language Models: Towards Zero-Shot Language UnderstandingDownload PDF

Published: 31 Oct 2022, Last Modified: 12 Mar 2024NeurIPS 2022 AcceptReaders: Everyone
Keywords: Zero-Shot Learning, Natural Language Understanding, Pretrained Language Models
Abstract: Pretrained language models (PLMs) have demonstrated remarkable performance in various natural language processing tasks: Unidirectional PLMs (e.g., GPT) are well known for their superior text generation capabilities; bidirectional PLMs (e.g., BERT) have been the prominent choice for natural language understanding (NLU) tasks. While both types of models have achieved promising few-shot learning performance, their potential for zero-shot learning has been underexplored. In this paper, we present a simple approach that uses both types of PLMs for fully zero-shot learning of NLU tasks without requiring any task-specific data: A unidirectional PLM generates class-conditioned texts guided by prompts, which are used as the training data for fine-tuning a bidirectional PLM. With quality training data selected based on the generation probability and regularization techniques (label smoothing and temporal ensembling) applied to the fine-tuning stage for better generalization and stability, our approach demonstrates strong performance across seven classification tasks of the GLUE benchmark (e.g., 72.3/73.8 on MNLI-m/mm and 92.8 on SST-2), significantly outperforming zero-shot prompting methods and achieving even comparable results to strong few-shot approaches using 32 training samples per class.
Supplementary Material: pdf
TL;DR: We propose SuperGen, a supervision generation approach for zero-shot natural language understanding
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
19 Replies