ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction

ICLR 2025 Conference Submission2063 Authors

20 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Normal Deflection Fields, High-Fidelity Indoor Reconstruction
TL;DR: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction
Abstract: Neural implicit reconstruction via volume rendering has demonstrated its effectiveness in recovering dense 3D surfaces. However, it is non-trivial to simultaneously recover meticulous geometry and preserve smoothness across regions with differing characteristics. To address this issue, previous methods typically employ geometric priors, which are often constrained by the performance of the prior models. In this paper, we propose ND-SDF, which learns a Normal Deflection field to represent the angular deviation between the scene normal and the prior normal. Unlike previous methods that uniformly apply geometric priors on all samples, introducing significant bias in accuracy, our proposed normal deflection field dynamically learns and adapts the utilization of samples based on their specific characteristics, thereby improving both the accuracy and effectiveness of the model. Our method not only obtains smooth weakly textured regions such as walls and floors but also preserves the geometric details of complex structures. In addition, we introduce a novel ray sampling strategy based on the deflection angle to facilitate the unbiased rendering process, which significantly improves the quality and accuracy of intricate surfaces, especially on thin structures. Consistent improvements on various challenging datasets demonstrate the superiority of our method.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2063
Loading