Keywords: Evidential Deep Learning, Dense Feature Matching, Pose Estimation
TL;DR: An evidential deep learning framework to improve the robustness of dense feature matchers
Abstract: Dense feature matching methods aim to estimate a dense correspondence field between images. Inaccurate correspondence can occur due to the presence of unmatchable region, necessitating the need for certainty measurement. This is typically addressed by training a binary classifier to decide whether each predicted correspondence is reliable. However, deep neural network-based classifiers can be vulnerable to image corruptions or perturbations, making it difficult to obtain reliable matching pairs in corrupted scenario. In this work, we propose an evidential deep learning framework to enhance the robustness of dense matching against corruptions. We modify the certainty prediction branch in dense matching models to generate appropriate belief masses and compute the certainty score by taking expectation over the resulting Dirichlet distribution. We evaluate our method on a wide range of benchmarks and show that our method leads to improved robustness against common corruptions and adversarial attacks, achieving up to 10.1\% improvement under severe corruptions.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5951
Loading