Keywords: safe reinforcement learning, contrastive risk prediction
TL;DR: We propose a contrastive risk prediction method to train safe RL agents with risk preventive trajectory exploration and reward shaping.
Abstract: As safety violations can lead to severe consequences in real-world applications, the increasing deployment of Reinforcement Learning (RL) in safety-critical domains such as robotics has propelled the study of safe exploration for reinforcement learning (safe RL). In this work, we propose a risk preventive training method for safe RL, which learns a statistical contrastive classifier to predict the probability of a state-action pair leading to unsafe states. Based on the predicted risk probabilities, we can collect risk preventive trajectories and reshape the reward function with risk penalties to induce safe RL policies. We conduct experiments in robotic simulation environments. The results show the proposed approach has comparable performance with the state-of-the-art model-based methods and outperforms conventional model-free safe RL approaches.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
16 Replies
Loading