Keywords: conditional average treatment effect, unconfoundedness, causal inference
TL;DR: We propose a CATE estimation method that leverages RCT outcomes and a pseudo-confounder generator to mitigate hidden confounder bias.
Abstract: One of the major challenges in estimating conditional potential outcomes and conditional average treatment effects (CATE) is the presence of hidden confounders. Since testing for hidden confounders cannot be accomplished only with observational data, conditional unconfoundedness is commonly assumed in the literature of CATE estimation. Nevertheless, under this assumption, CATE estimation can be significantly biased due to the effects of unobserved confounders. In this work, we consider the case where in addition to a potentially large observational dataset, a small dataset from a randomized controlled trial (RCT) is available.
Notably, we make no assumptions on the existence of any covariate information for the RCT dataset, we only require the outcomes to be observed. We propose a CATE estimation method based on a pseudo-confounder generator and a CATE model that aligns the learned potential outcomes from the observational data with those observed from the RCT. Our method is applicable to many practical scenarios of interest, particularly those where privacy is a concern (e.g., medical applications). Extensive numerical experiments are provided demonstrating the effectiveness of our approach for both synthetic and real-world datasets.
Latex Source Code: zip
Signed PMLR Licence Agreement: pdf
Readers: auai.org/UAI/2025/Conference, auai.org/UAI/2025/Conference/Area_Chairs, auai.org/UAI/2025/Conference/Reviewers, auai.org/UAI/2025/Conference/Submission621/Authors, auai.org/UAI/2025/Conference/Submission621/Reproducibility_Reviewers
Submission Number: 621
Loading