Recommending Product Sizes to Customers

Published: 01 Jan 2017, Last Modified: 27 Sept 2024RecSys 2017EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We propose a novel latent factor model for recommending product size fits {Small, Fit, Large} to customers. Latent factors for customers and products in our model correspond to their physical true size, and are learnt from past product purchase and returns data. The outcome for a customer, product pair is predicted based on the difference between customer and product true sizes, and efficient algorithms are proposed for computing customer and product true size values that minimize two loss function variants. In experiments with Amazon shoe datasets, we show that our latent factor models incorporating personas, and leveraging return codes show a 17-21% AUC improvement compared to baselines. In an online A/B test, our algorithms show an improvement of 0.49% in percentage of Fit transactions over control.
Loading