AttnDreamBooth: Towards Text-Aligned Personalized Text-to-Image Generation

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Diffusion Models, Personalized Text-to-Image Generation, Personalization
Abstract: Recent advances in text-to-image models have enabled high-quality personalized image synthesis based on user-provided concepts with flexible textual control. In this work, we analyze the limitations of two primary techniques in text-to-image personalization: Textual Inversion and DreamBooth. When integrating the learned concept into new prompts, Textual Inversion tends to overfit the concept, while DreamBooth often overlooks it. We attribute these issues to the incorrect learning of the embedding alignment for the concept. To address this, we introduce AttnDreamBooth, a novel approach that separately learns the embedding alignment, the attention map, and the subject identity across different training stages. We also introduce a cross-attention map regularization term to enhance the learning of the attention map. Our method demonstrates significant improvements in identity preservation and text alignment compared to the baseline methods.
Supplementary Material: zip
Primary Area: Diffusion based models
Submission Number: 10171
Loading