SketchKnitter: Vectorized Sketch Generation with Diffusion ModelsDownload PDF

Published: 01 Feb 2023, 19:19, Last Modified: 01 Feb 2023, 19:19ICLR 2023 notable top 25%Readers: Everyone
Abstract: We show vectorized sketch generation can be identified as a reversal of the stroke deformation process. This relationship was established by means of a diffusion model that learns data distributions over the stroke-point locations and pen states of real human sketches. Given randomly scattered stroke-points, sketch generation becomes a process of deformation-based denoising, where the generator rectifies positions of stroke points at each timestep to converge at a recognizable sketch. A key innovation was to embed recognizability into the reverse time diffusion process. It was observed that the estimated noise during the reversal process is strongly correlated with sketch classification accuracy. An auxiliary recurrent neural network (RNN) was consequently used to quantify recognizability during data sampling. It follows that, based on the recognizability scores, a sampling shortcut function can also be devised that renders better quality sketches with fewer sampling steps. Finally it is shown that the model can be easily extended to a conditional generation framework, where given incomplete and unfaithful sketches, it yields one that is more visually appealing and with higher recognizability.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Generative models
10 Replies