Compute-Constrained Data Selection

Published: 22 Jan 2025, Last Modified: 27 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Data Selection, Scaling Laws, Compute-constrained, Compute-optimal Training.
TL;DR: Post-training data selection in a scaling laws framework.
Abstract: Data selection can reduce the amount of training data needed to finetune LLMs; however, the efficacy of data selection scales directly with its compute. Motivated by the practical challenge of compute-constrained finetuning, we consider the setting in which both the cost of selecting data and training are budgeted for. We first formalize the problem of data selection with a cost-aware utility function, and model the data selection problem as trading off initial-selection cost for training gain. We run a comprehensive sweep of experiments across multiple tasks, varying compute budget by scaling finetuning tokens, model sizes, and data selection compute. Interestingly we find that many powerful data selection methods are almost never compute-optimal, and that cheaper data selection alternatives dominate both from a theoretical and empirical perspective. For compute-optimal training, we find that perplexity and gradient data selection require training-to-selection model size ratios of 5x and 10x, respectively.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12314
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview