Guided Sketch-Based Program Induction by Search Gradients

15 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: program induction, program synthesis, optimization, discrete optimization, evolution strategies
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: An algorithm that learns programs spontaneously through gradient descent without neural networks for guidance.
Abstract: Many tasks can be easily solved using machine learning techniques. However, some tasks cannot readily be solved using statistical models, requiring a symbolic approach instead. Program induction is one of the ways that such tasks can be solved by means of capturing an interpretable and generalizable algorithm through training. However, contemporary approaches to program induction are not sophisticated enough to readily be applied to various types of tasks as they tend to be formulated as a single, all-encompassing model, usually parameterized by neural networks. In an attempt to make program induction a viable solution for many scenarios, we propose a framework for learning parameterized programs via search gradients using evolution strategies. This formulation departs from traditional program induction as it allows for the programmer to impart task-specific code to the program 'sketch', while also enjoying the benefits of accelerated learning through end-to-end gradient-based optimization.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 286
Loading