Large-Scale JPEG Image Steganalysis Using Hybrid Deep-Learning FrameworkDownload PDFOpen Website

Published: 01 Jan 2018, Last Modified: 12 May 2023IEEE Trans. Inf. Forensics Secur. 2018Readers: Everyone
Abstract: Adoption of deep learning in image steganalysis is still in its initial stage. In this paper, we propose a generic hybrid deep-learning framework for JPEG steganalysis incorporating the domain knowledge behind rich steganalytic models. Our proposed framework involves two main stages. The first stage is hand-crafted, corresponding to the convolution phase and the quantization and truncation phase of the rich models. The second stage is a compound deep-neural network containing multiple deep subnets, in which the model parameters are learned in the training procedure. We provided experimental evidence and theoretical reflections to argue that the introduction of threshold quantizers, though disabling the gradient-descent-based learning of the bottom convolution phase, is indeed cost-effective. We have conducted extensive experiments on a large-scale data set extracted from ImageNet. The primary data set used in our experiments contains 500 000 cover images, while our largest data set contains five million cover images. Our experiments show that the integration of quantization and truncation into deep-learning steganalyzers do boost the detection performance by a clear margin. Furthermore, we demonstrate that our framework is insensitive to JPEG blocking artifact alterations, and the learned model can be easily transferred to a different attacking target and even a different data set. These properties are of critical importance in practical applications.
0 Replies

Loading