Diverse Message Passing for Attribute with HeterophilyDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: Graph Neural Networks, over-smoothing issue, networks with heterophily
Abstract: Most of the existing GNNs can be modeled via the Uniform Message Passing framework. This framework considers all the attributes of each node in its entirety, shares the uniform propagation weights along each edge, and focuses on the uniform weight learning. The design of this framework possesses two prerequisites, the simplification of homophily and heterophily to the node-level property and the ignorance of attribute differences. Unfortunately, different attributes possess diverse characteristics. In this paper, the network homophily rate defined with respect to the node labels is extended to attribute homophily rate by taking the attributes as weak labels. Based on this attribute homophily rate, we propose a Diverse Message Passing (DMP) framework, which specifies every attribute propagation weight on each edge. Besides, we propose two specific strategies to significantly reduce the computational complexity of DMP to prevent the overfitting issue. By investigating the spectral characteristics, existing spectral GNNs are actually equivalent to a degenerated version of DMP. From the perspective of numerical optimization, we provide a theoretical analysis to demonstrate DMP's powerful representation ability and the ability of alleviating the over-smoothing issue. Evaluations on various real networks demonstrate the superiority of our DMP on handling the networks with heterophily and alleviating the over-smoothing issue, compared to the existing state-of-the-arts.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: zip
Code: zip
9 Replies

Loading