Disentangling Adversarial Robustness in Directions of the Data ManifoldDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Adversarial Robustness, Adversarial Training, Generative Models
Abstract: Using generative models (GAN or VAE) to craft adversarial examples, i.e. generative adversarial examples, has received increasing attention in recent years. Previous studies showed that the generative adversarial examples work differently compared to that of the regular adversarial examples in many aspects, such as attack rates, perceptibility, and generalization. But the reasons causing the differences between regular and generative adversarial examples are unclear. In this work, we study the theoretical properties of the attacking mechanisms of the two kinds of adversarial examples in the Gaussian mixture data model case. We prove that adversarial robustness can be disentangled in directions of the data manifold. Specifically, we find that: 1. Regular adversarial examples attack in directions of small variance of the data manifold, while generative adversarial examples attack in directions of large variance. 2. Standard adversarial training increases model robustness by extending the data manifold boundary in directions of small variance, while on the contrary, adversarial training with generative adversarial examples increases model robustness by extending the data manifold boundary directions of large variance. In experiments, we demonstrate that these phenomena also exist on real datasets. Finally, we study the robustness trade-off between generative and regular adversarial examples. We show that the conflict between regular and generative adversarial examples is much smaller than the conflict between regular adversarial examples of different norms.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=w5p0Z-S6yz
11 Replies

Loading