Improving Pre-trained Self-Supervised Embeddings Through Effective Entropy Maximization

Published: 22 Jan 2025, Last Modified: 11 Mar 2025AISTATS 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
TL;DR: We propose a simple add-on SSL criterion to improve pretrained SSL embeddings using only few additional epochs of continued pre-training.
Abstract: A number of different architectures and loss functions have been applied to the problem of self-supervised learning (SSL), with the goal of developing embeddings that provide the best possible pre-training for as-yet-unknown, lightly supervised downstream tasks. One of these SSL criteria is to maximize the entropy of a set of embeddings in some compact space. But the goal of maximizing the embedding entropy often depends—whether explicitly or implicitly—upon high dimensional entropy estimates, which typically perform poorly in more than a few dimensions. In this paper, we motivate an effective entropy maximization criterion (E2MC), defined in terms of easy-to-estimate, low-dimensional constraints. We demonstrate that using it to continue training an already-trained SSL model for only a handful of epochs leads to a consistent and, in some cases, significant improvement in downstream performance. We perform careful ablation studies to show that the improved performance is due to the proposed add-on criterion. We also show that continued pre-training with alternative criteria does not lead to notable improvements, and in some cases, even degrades performance.
Submission Number: 150
Loading