Abstract: Author summary Proteins are the molecular nanomachines in biological cells and thus vital to any known form of life. From the evolutionary perspective, viable protein structure emerges on the basis of a ‘form-follows-function’ principle. A protein’s designated function is inextricably linked to dynamic conformational changes, which can be observed by small-angle X-ray scattering. Intensities from SAXS contain low-resolution information on the protein’s shape at different steps of its functional cycle. We are interested in directly getting an atomistic model of this encoded structure. One powerful approach is to include the experimental data into computational simulations of the protein’s function-related physical motions. We combine scattering intensities with coarse-grained native structure-based models. These models are computationally highly efficient yet describe the system’s dynamics realistically. Here, we present our method for rapid interpretation of scattering intensities from SAXS to derive structural models, using minimal computational resources and time.
0 Replies
Loading