In-Context Reverse Classification Accuracy: Efficient Estimation of Segmentation Quality without Ground-Truth

Published: 01 Jan 2025, Last Modified: 06 Nov 2025CoRR 2025EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Assessing the quality of automatic image segmentation is crucial in clinical practice, but often very challenging due to the limited availability of ground truth annotations. Reverse Classification Accuracy (RCA) is an approach that estimates the quality of new predictions on unseen samples by training a segmenter on those predictions, and then evaluating it against existing annotated images. In this work, we introduce Conformal In-Context RCA, a novel method for automatically estimating segmentation quality with statistical guarantees in the absence of ground-truth annotations, which consists of two main innovations. First, In-Context RCA, which leverages recent in-context learning models for image segmentation and incorporates retrieval-augmentation techniques to select the most relevant reference images. This approach enables efficient quality estimation with minimal reference data while avoiding the need of training additional models. Second, we introduce Conformal RCA, which extends both the original RCA framework and In-Context RCA to go beyond point estimation. Using tools from split conformal prediction, Conformal RCA produces prediction intervals for segmentation quality providing statistical guarantees that the true score lies within the estimated interval with a user-specified probability. Validated across 10 different medical imaging tasks in various organs and modalities, our methods demonstrate robust performance and computational efficiency, offering a promising solution for automated quality control in clinical workflows, where fast and reliable segmentation assessment is essential. The code is available at https://github.com/mcosarinsky/Conformal-In-Context-RCA.
Loading