COME: Test-time Adaption by Conservatively Minimizing Entropy

Published: 22 Jan 2025, Last Modified: 02 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Test-time adaption, Out-of-distribution generalization
TL;DR: We propose an alternative to entropy minimization as a better learning principle for TTA tasks.
Abstract:

Machine learning models must continuously self-adjust themselves for novel data distribution in the open world. As the predominant principle, entropy minimization (EM) has been proven to be a simple yet effective cornerstone in existing test-time adaption (TTA) methods. While unfortunately its fatal limitation (i.e., overconfidence) tends to result in model collapse. For this issue, we propose to \textbf{\texttt{Co}}nservatively \textbf{\texttt{M}}inimize the \textbf{\texttt{E}}ntropy (\texttt{COME}), which is a simple drop-in replacement of traditional EM to elegantly address the limitation. In essence, \texttt{COME} explicitly models the uncertainty by characterizing a Dirichlet prior distribution over model predictions during TTA. By doing so, \texttt{COME} naturally regularizes the model to favor conservative confidence on unreliable samples. Theoretically, we provide a preliminary analysis to reveal the ability of \texttt{COME} in enhancing the optimization stability by introducing a data-adaptive lower bound on the entropy. Empirically, our method achieves state-of-the-art performance on commonly used benchmarks, showing significant improvements in terms of classification accuracy and uncertainty estimation under various settings including standard, life-long and open-world TTA, i.e., up to $34.5%$ improvement on accuracy and $15.1%$ on false positive rate. Our code is available at: \href{https://github.com/BlueWhaleLab/COME}{https://github.com/BlueWhaleLab/COME}.

Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 632
Loading