IterCQR: Iterative Conversational Query Reformulation with Retrieval GuidanceDownload PDF

Anonymous

16 Dec 2023ACL ARR 2023 December Blind SubmissionReaders: Everyone
TL;DR: IterCQR iteratively trains the conversational query reformulation (CQR) model without human rewritten queries by directly leveraging information retrieval (IR) signals as a reward.
Abstract: Conversational search aims to retrieve passages containing essential information to answer queries in a multi-turn conversation. In conversational search, reformulating context-dependent conversational queries into stand-alone forms is imperative to effectively utilize off-the-shelf retrievers. Previous methodologies for conversational query reformulation frequently depend on human-annotated rewrites. However, these manually crafted queries often result in sub-optimal retrieval performance and require high collection costs. To address these challenges, we propose Iterative Conversational Query Reformulation (IterCQR), a methodology that conducts query reformulation without relying on human oracles. IterCQR iteratively trains the conversational query reformulation (CQR) model by directly leveraging information retrieval (IR) signals as a reward. Our IterCQR training guides the CQR model such that generated queries contain necessary information from the previous dialogue context. Our proposed method shows state-of-the-art performance on two widely-used datasets, demonstrating its effectiveness on both sparse and dense retrievers. Moreover, IterCQR exhibits superior performance in challenging settings such as generalization on unseen datasets and low-resource scenarios.
Paper Type: long
Research Area: Dialogue and Interactive Systems
Contribution Types: NLP engineering experiment, Approaches to low-resource settings, Publicly available software and/or pre-trained models
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview