LongHalQA: Long-Context Hallucination Evaluation for MultiModal Large Language Models

26 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: hallucination benchmark, multimodal large language model
TL;DR: We propose LongHalQA, an LLM-free hallucination benchmark comprising 6.5k long and complex hallucination text well aligned with real-world scenarios, with two MCQ tasks hallucination discrimination and completion for evaluation.
Abstract: Hallucination, a phenomenon where multimodal large language models(MLLMs) tend to generate textual responses that are plausible but unaligned with the image, has become one major hurdle in various MLLM-related applications. Several benchmarks have been created to gauge the hallucination levels of MLLMs, by either raising discriminative questions about the existence of objects or introducing LLM evaluators to score the generated text from MLLMs. However, the discriminative data largely involve simple questions that are not aligned with real-world text, while the generative data involve LLM evaluators that are computationally intensive and unstable due to their inherent randomness. We propose LongHalQA, an LLM-free hallucination benchmark that comprises 6K long and complex hallucination text. LongHalQA is featured by GPT4V-generated hallucinatory data that are well aligned with real-world scenarios, including object/image descriptions and multi-round conversations with 14/130 words and 189 words, respectively, on average. It introduces two new tasks, hallucination discrimination and hallucination completion, unifying both discriminative and generative evaluations in a single multiple-choice-question form and leading to more reliable and efficient evaluations without the need for LLM evaluators. Further, we propose an advanced pipeline that greatly facilitates the construction of future hallucination benchmarks with long and complex questions and descriptions. Extensive experiments over multiple recent MLLMs reveal various new challenges when they are handling hallucinations with long and complex textual data.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6985
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview