InfoGCL: Information-Aware Graph Contrastive LearningDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: Graph Representation Learning, Contrastive Learning, Information Bottleneck
TL;DR: We study how graph information is transformed and transferred during the contrastive learning process, and propose an information-aware graph contrastive learning framework called InfoGCL.
Abstract: Various graph contrastive learning models have been proposed to improve the performance of tasks on graph datasets in recent years. While effective and prevalent, these models are usually carefully customized. In particular, despite all recent work create two contrastive views, they differ in a variety of view augmentations, architectures, and objectives. It remains an open question how to build your graph contrastive learning model from scratch for particular graph tasks and datasets. In this work, we aim to fill this gap by studying how graph information is transformed and transferred during the contrastive learning process, and proposing an information-aware graph contrastive learning framework called InfoGCL. The key to the success of the proposed framework is to follow the Information Bottleneck principle to reduce the mutual information between contrastive parts while keeping task-relevant information intact at both the levels of the individual module and the entire framework so that the information loss during graph representation learning can be minimized. We show for the first time that all recent graph contrastive learning methods can be unified by our framework. Based on theoretical and empirical analysis on benchmark graph datasets, we show that InfoGCL achieves state-of-the-art performance in the settings of both graph classification and node classification tasks.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
9 Replies

Loading