Keywords: LLM, Evaluation
TL;DR: Scalable curation of high-quality, automated benchmarks from extensive data without human in the loop.
Abstract: The rapid evolution of Large Language Models (LLMs) has outpaced the development of model evaluation, highlighting the need for continuous curation of new,
challenging benchmarks. However, manual curation of high-quality, human-aligned
benchmarks is expensive and time-consuming. To address this, we introduce Bench-O-Matic, an automated pipeline that leverages LLMs to curate high-quality, open-
ended prompts from large, crowd-sourced datasets, enabling continuous benchmark
updates without human in the loop. We apply Bench-O-Matic to datasets such as
Chatbot Arena and WildChat-1M, extracting challenging prompts and utilizing
LLM-as-a-Judge for automatic model evaluation. To validate benchmark quality,
we propose new metrics to measure a benchmark’s alignment with human preferences and ability to separate models. We release Eval-O-Matic, a benchmark
consisting 500 challenging prompts curated by Bench-O-Matic. Eval-O-Matic
provides 3x higher separation of model performances compared to MT-Bench and
achieves 98.6% correlation with human preference rankings, all at a cost of $20.
Our work sets a new framework for the scalable curation of automated benchmarks
from extensive data.
Primary Area: datasets and benchmarks
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13585
Loading