Keywords: language model pre-training, data mixture, regression
TL;DR: We introduce RegMix, an automated data mixture method that formulates data mixture as a regression problem. RegMix achieves a 6.3% improvement over human selection on the HellaSwag benchmark, with only a 2% extra training FLOPs.
Abstract: The data mixture for large language model pre-training significantly impacts performance, yet how to determine an effective mixture remains unclear. We propose RegMix to automatically identify a high-performing data mixture by formulating it as a regression task. RegMix trains many small models on diverse data mixtures, uses regression to predict performance of unseen mixtures, and applies the best predicted mixture to train a large-scale model with orders of magnitude more compute. To empirically validate RegMix, we train 512 models with 1M parameters for 1B tokens to fit the regression model and predict the best data mixture. Using this mixture we train a 1B parameter model for 25B tokens (i.e. 1000× larger and 25× longer) which we find performs best among 64 candidate 1B parameter models with other mixtures. Furthermore, RegMix consistently outperforms human selection in experiments involving models up to 7B models trained on 100B tokens, while matching or exceeding DoReMi using just 10% of the computational resources. Our experiments also show that (1) Data mixtures significantly impact performance; (2) Web corpora rather than data perceived as high-quality like Wikipedia have the strongest positive correlation with downstream performance; (3) Domains interact in complex ways often contradicting common sense, thus automatic approaches like RegMix are needed; (4) Data mixture effects transcend scaling laws. Our code is available at https://github.com/sail-sg/regmix.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6642
Loading